$$\theta_{13}$$

Stephen Parke Fermilab:

• ν_e fraction of ν_3 : $-\sin^2\theta_{13}$

• mass hierarchy: $- \text{ sign of } \delta m_{31}^2$

panic $^{\nu}$ October 30, 2005

independent of $sign(\sin\delta_{CP})$, Majorana phases α, β

Mena + SP hep-ph/0312131

Fractional Flavor Content varying
$$\cos \delta$$

$$D \equiv \frac{1}{2} - \sin^2 \theta_{23}$$
$$= (|U_{\tau 3}|^2 - |U_{\mu 3}|^2)/2(1 - |U_{e3}|^2)$$

$$|\nu_e, \nu_\mu, \nu_\tau\rangle_{flavor}^T = U_{\alpha i} |\nu_1, \nu_2, \nu_3\rangle_{mass}^T$$

$$U_{\alpha i} = \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & & \\ -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & \\ -s_{12} & c_{12} & \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & e^{i\alpha} & \\ & & e^{i\beta} \end{pmatrix}$$

Atmos. L/E $\mu \to \tau$ Atmos. L/E $\mu \leftrightarrow e$ Solar L/E $e \to \mu, \tau$ $0\nu\beta\beta$ decay $500 \mathrm{km/GeV}$ $15 \mathrm{km/MeV}$

No indication yet of nonzero θ_{13} from atmospheric, solar and terrestrial ν

Chooz bound $\sin^2 \theta_{13} < 0.04$

Quest for ν_e fraction in ν_3 : $\sin^2\theta_{13}$

- Current LBL (MINOS)
- Atmospheric Neutrinos
- Low and High Energy Solar Neutrinos
- Supernova Neutrinos
- Short Baseline Reactor (Double Chooz, ...)
- Future Long Baseline (T2K, NuMI, BNL2?, ...)
- Neutrino Factories
- Beta Beams

MINOS:

Has some sensitivity to ν_e above backgrounds.

Primary goal is to measure $|\delta m_{32}^2|$ to 10%

Atmospheric Neutrinos

SK - Suzuki

$$-- |U_{e3}| = 0.2$$

$$\Delta m_{12}^2 = 7 \times 10^{-5} eV^2$$

Interference

Low and High Energy Solar Neutrinos

Goswami + Smirnov hep-ph/0411359

$$\frac{CC}{NC} \sim \cos^2 \theta_{13} \sin^2 \theta_{12} + \cdots$$

$$\sin^2 \theta_{13} \uparrow \quad \Rightarrow \quad \sin^2 \theta_{12} \uparrow$$

$$Ga \sim \cos^4 \theta_{13} \cos^4 \theta_{12} + \cdots$$

$$\sin^2 \theta_{13} \uparrow \Rightarrow \sin^2 \theta_{12} \downarrow$$

Figure 6: The iso-contours of CC/NC = 0.31 at SNO and $Q_{Ge} = 68.1$ SNU in Ga experiments in the $\sin^2\theta_{12} - \sin^2\theta_{13}$ plane for different values of Δm_{21}^2 : $\Delta m_{21}^2 = 9 \cdot 10^{-5}$ eV² - the dotted lines; $\Delta m_{21}^2 = 8 \cdot 10^{-5}$ eV² - the solid lines; $\Delta m_{21}^2 = 7 \cdot 10^{-5}$ eV² - the dashed lines.

$$\sin^2 \theta_{\odot}^{^8B} \approx \sin^2 \theta_{12} - 0.9 \sin^2 \theta_{13}$$
$$\sin^2 \theta_{\odot}^{^8pp} \approx \sin^2 \theta_{12} + 1.5 \sin^2 \theta_{13}$$

$$\sin^2 \theta_{\odot}^{8pp} - \sin^2 \theta_{\odot}^{8B} \approx 2.4 \sin^2 \theta_{13}$$

$$\sin^2 \theta_{\odot}^{^{8}pep} \approx \sin^2 \theta_{12} + (0.5???) \sin^2 \theta_{13}$$

Nunokawa, Zukanovich + SP hep-ph/05 I Innn

Short Baseline $\bar{\nu}_e$ Disappearance: aka Reactor:

The
$$\mathcal{O}\left(\frac{\Delta_{solar}}{\Delta_{atm}}\right)$$
 VANISHES if

$$\delta m_{atm}^2 = \cos^2 \theta_{12} \ \delta m_{31}^2 + \sin^2 \theta_{12} \ \delta m_{32}^2
= m_3^2 - (\cos^2 \theta_{12} \ m_1^2 + \sin^2 \theta_{12} \ m_2^2) \Rightarrow \delta m_{31}^2 \quad when \ \theta_{12} \Rightarrow 0$$

Average ν_e mass in 1 and 2.

This is the $|\delta m_{atm}^2|_e$ that could be measured in such an experiment.

Nunokawa, Zukanovich + SP hep-ph/0503283

- Normal Hierarchy: $|\delta m_{atm}^2|_e > |\delta m_{atm}^2|_\mu$
- Inverted Hierarchy: $|\delta m^2_{atm}|_e < |\delta m^2_{atm}|_\mu$
- Unfortunately difference is small 1 2 % !!!

where $|\delta m^2_{atm}|_{\mu}$ from ν_{μ} disappearance.

$$|\delta m^2_{atm}|_{\mu} \Rightarrow \delta m^2_{32}$$

when $\theta_{12} \Rightarrow 0$

J. Link, Columbia

• Pure measurement of $\sin^2 \theta_{13}$ — no contamination from $\theta_{23} \leftrightarrow \frac{\pi}{2} - \theta_{23}$ degeneracy.

With Off-axis measurements of $u_{\mu}
ightarrow
u_{e}$:

- of $\sin^2\theta_{23}\sin^2\theta_{13}$ can help resolve $\theta_{23} \leftrightarrow \frac{\pi}{2} \theta_{23}$ degeneracy for $\sin^22\theta_{23} \neq 1$.
- Help resolve hierarchy and $\sin \delta \neq 0$, maybe.

VAC LBL: $\nu_{\mu} ightarrow \nu_{e}$

CP violation !!!

$$P_{\mu \to e} pprox |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)} + \sqrt{P_{sol}}|^2$$

where $\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31}$ and $\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \sin \Delta_{21}$

$u_{\mu} ightarrow u_{e} \; ext{ with MATTER}$

CP violation !!!

$$P_{\mu
ightarrow e} pprox \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} \pm \delta)} + \sqrt{P_{sol}} \mid^2$$

where
$$\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)} \Delta_{31}$$

and
$$\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}$$

$$a=G_FN_e/\sqrt{2}=(4000\;km)^{-1}, \ \pm=sign(\delta m_{31}^2) \ \Delta_{ij}=|\delta m_{ij}^2|L/4E$$

 $\{\delta m^2 \sin 2\theta\}$ is invariant

$$\sin \Delta_{31} \Rightarrow \left(\frac{\Delta_{31}}{\Delta_{31} \mp aL}\right) \sin(\Delta_{31} \mp aL) \qquad \stackrel{\stackrel{\triangleright}{\mathbb{N}}}{\mathbb{N}} \quad 0.000$$

$$\sin \Delta_{21} \Rightarrow \left(\frac{\Delta_{21}}{\Delta_{21} \mp aL}\right) \sin(\Delta_{21} \mp aL) \qquad \stackrel{\stackrel{\stackrel{\triangleright}{\mathbb{N}}}{\mathbb{N}}}{\mathbb{N}} \quad -0.005$$

$$\sin \Delta_{32} \Rightarrow \sin \Delta_{32}$$

Matter effects are IMPORTANT when $\sin(\Delta \mp aL) \neq (\Delta \mp aL)$.

Numerous Approaches to Studying $\nu_{\mu} \leftrightarrow \nu_{e}$ Transitions:

- ullet Off Axis Narrow Band Beams $u_{\mu}
 ightarrow
 u_{e}$ (T2K and NOvA)
- ullet On Axis Broadband Beam $u_{\mu}
 ightarrow
 u_{e}$ (BNL 2 HSK)
- Neutrino Factory $\nu_e
 ightarrow
 u_\mu$
- ullet Beta Beams $u_e
 ightarrow
 u_\mu$

Off-Axis Neutrino Beams:

$$E_{\nu} = \frac{0.43 E_{\pi}}{(1 + \theta^2 \gamma_{\pi}^2)}$$

Off-Axis the beams are Narrow! approx. gaussian with spread $20\% < E_{\nu} >$

GREAT!!!

as the primary bckgrd to ν_e detection is π^0 coming from higher energy NC events. (ν_e contamination in beam is small 0.5% and apprx known.)

BNL-proposal '94

FLARE

Minakata+Nunokawa hep-ph/0108085

Sensitivity to $heta_{13}$

T2K:

Search for ν_{e} appearance

5 yrs 0.75MW with SK

assumes $\delta = 0$

Question: What exposure is required to reach this sensitivity if $\delta = \pm \frac{\pi}{2}$?

Zero Mimicking Soln:

$$\sqrt{P_{atm}} = \pm 2\sqrt{P_{sol}}\sin\delta$$

NuMI: NOvA, FLARE Zero Mimicking Soln:

NOvA, FLARE:

"S": 3e22 proton Ktons

=(3.5+3.5) yrs @ 6.5e20 pot/yr x {30 ktons x 24%} or {9 ktons x 80%}

M: 5 x "S" L: 25 x "S"

Mass x POT x Eff

Mena+Parke hep-ph/0505202

$$\langle \sin \delta
angle_+ - \langle \sin \delta
angle_- \, = \, 1.41 \sqrt{rac{\sin^2 2 heta_{13}}{0.05}}$$

$$|\langle \sin \delta \rangle_{true}^{T2K} - \langle \sin \delta \rangle_{true}^{NO\nu A}| \approx 0.$$

$$|\langle \sin \delta
angle_{fake}^{T2K} - \langle \sin \delta
angle_{fake}^{NO
u A}| = 0.94 \sqrt{rac{\sin^2 2 heta_{13}}{0.05}}.$$

$$\langle \sin \delta
angle_+ - \langle \sin \delta
angle_- \, = \, 0.47 \sqrt{rac{\sin^2 2 heta_{13}}{0.05}}$$

Mena + SP hep-ph/0408070

NOvA plus "NEAR" DETECTOR

approx same E/L Mena, Palomares, Pascoli hep-ph/0504015

Neutrino - Neutrino

 $\sin^2 2\theta_{13} = (1, 2, 3, 4.3, 6, 7.4, 9.5) 10^{-2}$

Mass Hierarchy

from Off Axis

Fermilab Proton Driver Report

Leptonic CP and T Violation in Neutrino Oscillations

CP Violation and Leptogenesis

- For most Neutrino Mass Models there is a relationship between the Dirac CP phase δ and Majorana CP phases α_2 , α_3 .
- At a minimum they are all zero or all non-zero.
- α_2 , α_3 are responsible for Leptogenesis in the early universe by allowing for different decay rates of Neutral Heavy Leptons:

$$N \rightarrow l^+ \phi^-$$
 and $N \rightarrow l^- \phi^+$

- $B = \frac{1}{2}(B-L) + \frac{1}{2}(B+L)$, however (B+L) violated.
- ullet Hence the Dirac CP violating phase, δ , is a handle on Leptogenesis and hence Baryogenesis.

CP Violation: NOvA, FLARE

CP Violation

Solving Degeneracies:

Reactor + Off Axis:

Variable Measured	$\begin{array}{c} LBL \\ \nu_{\mu} \rightarrow \nu_{\mu} \end{array}$	$\begin{array}{c} LBL \\ \nu_{\mu} \to \nu_{e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{e} \end{array}$	$\begin{array}{c} Reactor \\ \bar{\nu}_e \rightarrow \bar{\nu}_e \end{array}$	Comments
$ \Delta m_{32}^2 $ $\sin^2 2\theta_{23}$ $\sin^2 \theta_{13}$	Y Y n	n n n	n n Y	magnitude but not sign $ heta_{23} \leftrightarrow rac{\pi}{2} - heta_{23}$ ambiguous direct measurement
$\sin^2 \theta_{23} \sin^2 \theta_{13}$ $\operatorname{sign}(\Delta m_{32}^2)$ $\cos \theta_{23} \sin \delta_{CP}$ $\cos \theta_{23} \cos \delta_{CP}$	n n n n	Y Y Y ?	n n n	combination of θ_{23} and θ_{13} via matter effects CP violation extremely difficult

On Axis Beams:

- 28 GeV protons. I MW beam power. Horn focussed
- 500 kT water Cherenkov detector.
- baseline > 2500 km. WIPP, Henderson, Homestake

Why Broadband Beam?

observe multiple nodes extraction of oscillating signal from background.

larger energies
larger cross sections
less running time for
anti-neutrinos
Sensitive to different
parameters in different
energy regions:

Many Off Axis experiments in one!

Why is $\nu_e \rightarrow \nu_\mu$ at a ν Factory Easy?

- Neutrinos/MW proton power cf conventional beams $\propto (E_{\mu}/15)^3$
- No Intrinsic ν_{μ} in the beam, only $\bar{\nu}_{\mu}$'s
- Charge of Muon easier to measure than e/π^0 separation
- Detector Technology straightforward (see MINOS)
- Backgrounds at $\leq 10^{-4}$ level, not few $\times 10^{-3}$

- Higher E means larger cross section, more events.
- Higher E allows larger L for same E/L, bigger matter effects (amplifies P_{atm}).

Comparison of Fluxes per MegaWatt at each experiment:

Note ν Factory flux divided by 3 to fit on graph!

Conclusions:

the θ_{13} window

is a

WONDERFUL OPPORTUNITY:

- $\sin^2 \theta_{13} \neq 0$ Reactor and LBL needed.
- For Mass Hierarchy we need more than one Off-Axis Exp. T2K + "NuMI exp."
 OR an On-Axis Exp.
- CP violation: Need many events: this implies Big detectors, Powerful Source, High Eff. (also \$\$\$)

new technology needed

Star Trek: The Next Generation

Geordi La Forge: in "The Enemy"

The visor "sees" Neutrinos!!!

in "The Enemy" ... but this requires special New Physics !!!

4 ellipses:

Parameter Degeneracies:

$$= \left(\frac{4}{3\pi}\right)^2 \left(\frac{\tan \theta_{23}}{\sin 2\theta_{12}}\right) \left(\frac{\delta m_{31}^2}{\delta m_{21}^2}\right) \left(a_E L\right) \sqrt{\frac{\sin^2 2\theta_{13}}{0.05}}$$

$$(a_E L)_{NOvA} = 3 \ (a_E L)_{T2K}$$

$$a \approx \frac{1}{4000 \ km}$$

Burget-Castell etal hep-ph/0103258

$$\Leftrightarrow \\ \sim \Delta_{31} \cot \Delta_{31}$$

0 when
$$\Delta_{31}=\pi/2$$

Mena + SP hep-ph/0408070

T2K:

T2K will operate at Vacuum Oscillation Maximum

$$P(\mu \to e) = P_{atm} - 2\sqrt{P_{atm}P_{sol}}\sin\delta + P_{sol}$$
 at $\sin^2 2\theta_{13} = 0.006$
$$P_{atm} = 4P_{sol}$$
 ($P_{sol} = 0.1\%$)

Therefore

$$P(\delta = 0) = 5P_{sol}$$

$$P(\delta = -\frac{\pi}{2}) = 9P_{sol}$$
 half exposure required.

$$P(\delta = \frac{\pi}{2}) = P_{sol}$$

 $P(\delta = \frac{\pi}{2}) = P_{sol}$ NO contribution from θ_{13} !!!!

Also

$$P(\delta = -\frac{\pi}{2}) = 5P_{sol}$$
 when $\sin^2 2\theta_{13} = 0.003$ $P(\delta = \frac{\pi}{2}) = 5P_{sol}$ when $\sin^2 2\theta_{13} = 0.02$

$$\sqrt{P_{atm}} = \pm 2\sqrt{P_{sol}} \sin \delta$$

